Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes

نویسندگان

  • Tatyana Soboleva
  • Zhong Xie
  • Zhiqing Shi
  • Emily Tsang
  • Titichai Navessin
  • Steven Holdcroft
چکیده

Two-probe electrochemical cells were designed for proton conductivity evaluation in the X, Y and Z directions using electrochemical impedance spectroscopy (EIS). Nafion 112, 115, 1135, 117 and 211 membranes were used to examine the conductivity in the three given directions, and to determine the influence of cell configuration and probe geometry on the accuracy and reproducibility of the measurement. Emphasis is placed on obtaining an understanding of the real system and adequate transfer of the physical processes into the form of the equivalent circuit for the extraction of reliable conductivity data. In order to verify that the method can determine anisotropic conductivity, novel fluorous block copolymers with various anisotropic phase segregated morphologies were evaluated. All polymer electrolyte membranes examined exhibited a Nyquist plot response in the form of a straight line with an angle of approximately 70 –80 to the Z 0 -axis. Interfacial capacitance, membrane bulk resistance and membrane bulk capacitance were considered as contributing parameters to the impedance of the system; high frequency inductance and contact resistance were instrumentally minimized. A marginally anisotropic conductivity (r=/r\ = 1.0–1.4) was found in all Nafion samples. Fluorous block copolymers with disordered morphology exhibited higher conductivity in the through-plane direction by a factor of 1.4. For the polymers with perforated lamellae and lamellae morphologies, in-plane conductivities were larger by factors of 2.4 and 5.5, respectively. Crown Copyright 2008 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review

Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...

متن کامل

Pre-Cracked Concrete Shear Strengthened with External CFRP Strips

In reinforced concrete design, there are situations where transfer of shear across a specific plane needs to be considered. Examples of such situation include corbels, bearing shoes, ledger beam bearing, and a host of connection between precast concrete elements. In this study, the shear transfer behavior of reinforced concrete is investigated experimentally by conducting test on 6 precracked p...

متن کامل

Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT ...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

PES/Quaternized-PES Blend Anion Exchange Membranes: Investigation of Polymer Compatibility and Properties of the Blend

Polyethersulfone (PES)-based anion exchange blend membranes were prepared from quaternized-PES (Q-PES) and N-Methyl-2-pyrrolidone (NMP) casting solutions with water as coagulant via non-solvent induced phase inversion. The compatibility of the blend system was investigated through thermodynamic studies while membrane formation was determined using the cloud point techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008